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ROTATIONS OF A HEAVY SOLID BODY 
THE PRINCIPAL PLANE 

OF ITS ELLIPSOID OF INERTIA* 

V.N. RUBANOVSKII 

(This is the second part of the author's report on "Stability of steady motions of mechanical 

systems containing absolutely rigid, elastic, and fluid components" at the 5-th All-Union 

Congress on Theoretical and Applied Mechanics, Alma-Ata, 27 May 1981). 

All possible qualitatively different types of bifurcation diagrams for bodies whose 

center of mass is close to the principal planes of their triaxial ellipsoids of in- 

ertia are classified, and the most interesting of such diagrams are presented. 

Stability of permanent rotations of a heavy solid body was investigated in /l/ using 

Chetaev's method for constructing Liapunov functions /2/, and some of the domains correspond- 

ing to stable and unstable rotations were indicated on the Staude cone. The widest sufficient 

conditions of permanent rotation stability were derived in /3/ on the basis of the Routh- 

Liapunov theorem /4/. The bifurcation and stability of permanent rotations were investigated 

in /5-7/ in the case of a body whose center of mass lies on the principal axis of its tri- 

axial ellipsoid of inertia and, also, in the case when the ellipsoidofinertia is an ellipsoid 

of revolution. 

1. The equations of motion of a heavy solid body about a fixed point 0 admit the fol- 

lowing energy and area integrals: 

(Jimi* + 2634 = Const, Li, = 
c 

J,Coiyi = k = Const 
i-1 ,=I 

where oi are projections of the body angular velocity on the principal axes fi of its el- 

lipsoid on inertia relative to point 0, Ji(J,< J, < J3) are the principal moments of inertiaof 

the body, yi are cosines of angles between the upward vertical and axes zi with u, = y12 + 
yt2+ yaz = 1, and ei are constants equal to the products of the body weight by the coordinates 

of its center of mass. 

The values of oi,yi for which Uhas fixed values under conditions U, = k, U, = 1, corres- 

pond to permanent rotations and are defined by formulas /5-7/ 

w1= q%, y1 = 
Cl 

01 (JI - h) 
(123) (h is a parameter) (1.1) 

with the dependence 

by formulas 

The sufficient conditions of stability of motion (1.1) relative to m'I,yi reduce to the 
inequalities /3,5-7/ 

of the angular velocity o of permanent rotation on parameter k determined 

(1.2) 

L> 0, A = wa(4L + JS)> 0 (1.3) 

L = ): (’ - Jd tJ, - Jd2~h2, 
(123) 

s = 2 (h - J2) (A _ J3)1,12 , 
(123) 

J = z J,,,,,2 

w3, 

The equation L(h) = 0 has a single real root /7/ 1 = J.', and J,,< ha.< J,, 

J1) e,‘> (J3 - J,)e12, while 
when (J, - 

J, < 3.” < J, when (J, - J,)e,? < (J, - J,)e,?. and sgn i (7~) = Sgn (h - h"). 
When conditions (1.3) are satisfied, 

x = 0. 
motion (1.1) is stable, and its instability degree 

Condition A> 0 is also the necessary stability condition /7/; motions (1.1) for 
which A<O, are unstable, and for them :! = 1. If conditions (1.3) are not satisfied and 
A> O,then x = 2. 

Motions (1.1) can be geometrically represented by points of curve k=k(h) which is 
determined by the second of Eqs.cl.2). 
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The formula (1.3) for A can be represented in the form /S-7/ 

A = 20~ (Wk/& w (A) = (Jr - h) (J, - h) (.I, - n) il. !, 

which enables us to reduce the analysis of the sign of A to the determination of zhe form CJ~ 

curve k = k(A). Equation A(h) = 0 is used for determining bifurcation points /S-77,' and IS 
equivalent to the equation dkldh = 0; at these points the tangent to curve k = k(h) is paral- 
lel to the h axis. 

Since conditions (1.3) are not affected by the substitution of --Q for w, it 1s possible 

to restrict the investigation of distribution of steady and unsteady motions (l.l! on curve 

I; = k (2,) to the investigationof its branches for which /c>O (w>O). 
The form of curve /Z = k(h) and the degree of instability distribution y = U, I,2 on It 

for 4J, > 3J,,e,e,e,+ 0 appear in /7/. 

Equation dkldh = 0 is equivalent to the equation 

P,o(h)=(~,IJ,(le--h)S(~3 - We14 + cpZ(h)(J1 - h)3[(WZ - 

3J,)(J, - h) + (4J, - 3J,)(J, - h)l e22e32)= 0 

(1.5) 

The problem of separating real roots of Eq.(1.5) is generally difficult, since known 
methods of analysis /8/, for instance, the device of Sturm series or the Routh algorithm re- 
quire the determination of the number of sign changes of fairly unwieldy expressions in (1.51, 

which depend on many parameters. If the body centerofmass lies in the principal plane ofits 
ellipsoid of inertia, Eq.(l.S) is considerably simplified and the problem of separating real 

roots can be completely solved. When that problem is solved, it is possible to draw definite 
conclusions on the bifurcations of motions (l.l), when the body center of mass is close to 
the principal plane oftheellipsoid of inertia. 

2. Let e,e? # 0, e3 = 0. then (1.1) and (1.2) assume the foml 

(0, = "I,'(. w2;'j = ej(Jj _ A)-': +7s = x6(k - J3), (I = 1. 2, S:j = 1, 2) (2.1) 

where S(z) = 0 when z#O,6(0)= 1, and x is a variable real parameter. 

Motion (2.1) can be geometrically represented /5/ in the space of parameters k,L,x by 

points of manifold k = k&r.) consisting of a cylindrical surface k = k&O) and curve k m= 

k (J3,x), A = J, which have one common point x = 0,h = J,,k = k (J,, 0). Since one and only one 

motion (2.1) corresponds to each generatrix of the cylindrical surface, we juxtapose to these 

qeneratrices points of their intersection with plane x = 0. To represent motions (2.1) we 

introduce in the analysis curve r whose branches lie in planes x = 0 and k = J, and are de- 

fined by equations k = k @,0),x = 0 and k = k(J,,x),h = J,, respectively. 

To investigate curve k = k @,9),x = 0 we use the equation akidh = 0 which is equivalent 

to equation 

PI0 (A) = (J3 - VP, (1) (2.2) 

P, (h) = J, (J, - Q5eId + J, (Jr - h)6e,a + [(4J1 - 3.J.J (J,- 

h) + (4Jz - 3J,)(J, - X)1 (Jl - h)2(J, - h)ze,%, 

whose root h = J, is of multiplicity 5. To investigate the roots of polynomial l',(k) we sub- 

stitute the new variable z for h and introduce the notation 

then P,(h) reduces to the form 

P, (1) E P (1) = zs - e*zW (z) + ae4 = 0, 0 (2) = (3a - 4) 2 + 3 - 4a (2.4) 

3. Consider the problem of separating real roots of Eq.(2.4). By the Descartes theorem 

Eq. (2.41 has one real root zl<O when na3/,; if a<3l,_ (2.4) has one negative root z, and two 

or none positive roots za. z3 (z3 > za). Hence we assume in what follows that n < 314. 

We introduce the two-valued function e2= F(z) defined by Eq.(2.4). For branches e2= fi*'(;) 

of that function we have 
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Function e*= F(z) has real values only when @(z)>4az. If it is not to assume negative 

values it is necessary that the following condition is satisfied: 

z < z., P* = (3 - 4a)(4 - 3c)-' (a <'/a) 

We denote the roots of equation 0z(~)-4az=0 by 21~ and 22. (z,* < il*) . We have an array of 

inequalities O<Z,,<Z,<Z~,. This implies that function e2= F(z) assumes real values and is 

nonnegative only for O<:Zzz,,, while for z<O the branch e2== F(')(z) assumes only positive 

and branch e*=F(-)(I) only negative values. The form of curve e2= F(z) is showninFig.l,where 

only branches that do not assume negative values are plotted. 

From this we draw the conclusion that for each value of a(a<3/,) Eq.(2.4) has three real 

roots, viz. z,, z2, z3 (2, < 0 < II C z3), if 0 < 9 & F(z,*). and the equality z,=z, holds only when e?= 

F (r,,); if ee > F (~lt)l then (2.4) has one real root %<O. 

Let us take some number z,>O and assume that z,.<zO, then (Fig.1) Eq. (2.4) with O<eZ< 

F (z‘*) has three real roots: z,,z~, 3. & < U < zz < z3 < z,* <I.), and the equality zg= 11. holds only 

ez > F (zM). then (2.4) has one real root z,<O. 

F (z,*) has three real roots: zl, zp, z3 (2, < 0 < z2 d 2,). 

0 < e? < F(-)(Lo) 

t+ = PC-)(z,) 

F(_)(G)< el< F(+)(Q) 

9 = F(+)(Q) 

F(+)(G) <@<F(b) 
e2 = P(q*) 

if however e2>F(~lt). then (2.4) has one real root z1< 0. 

4. Consider the question of the number and dispositionofrealrootsofthepolynomialP&). 

We denote by ki(i = 1,2,3) the values of h which by virtue of (2.3) correspond to values zi 

and set 20 = (J1 - J$)(J, - J,)-'= (a - b)(l - b)-‘> 1. On the basis of the analysis in Sect.3 

we conclude then that for a< 314 

1”. h, < a2 < J, < 1, < J,, 0 < es < F (~1~) 

2’. h, = h, < J, < h, < J,, e2 = F (zl*) 

3”. J, < h, < J,, e2 > F (zl*) 

(4.1) 

For a >"/t the polynomial PS(h) has one real root h,, J, < ar< J,. 

Fig.1 Fig.2 
In case 2O the respective curve dif- 

fers from that in Fig.2 onlyinthat 

it has an inflection point when 
1. = a, at which the instability degree remains unchanged, and in case 3" that curve increases 
strictly monotonically when h< J,. The form of branch k = k (JS,x),h = J, for all cases of 
(4.1) is the same as in /7/. 

Investigation of stability of 

motions (2.1) in the cases (4.1) 

does not present difficulties and 

is carried out as in /5-7/. 

Projections of curve l? on the 

0 Jf Jz JJ h numerals 0,1,2 indicate the instab- 

ility degree of respective motions. 

5. Let now the center of mass lie close to the plane s,=o. 
ity. Introducing in addition to (2.3) the notation 

Then e3 is a small quant- 
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r = (J3 - h) (J, - a)-‘, z = z (5) = Ia - b + (1 - a)x](l -- h-‘, t‘ -- exe2 ’ 1, 

: ,.I 

we represent Eq.(1.5) in the form 

G (G E) = m'p, (z) - 82x2z2 {[(36 - 4)9 + (3b - 4a)e*]2 + zR (2)) + &“bz5 = 0 i'J.L! 

R (z) = (3 - 4b)z2 + (3~2 - 4b)e2 (5. I! 

Equation (5.2) defines z as an implicit function of parameter E. For s=O it has 
the root 5 = 0 of multiplicity five. For finding real branches of I = S(E) we use the Newton 
diagram in /g/. We shall seek z = Z(E) of the form 

x=cP+c'P+'$... (5.4) 

Substituting (5.4) into (5.2) and taking into account (5.1), we equate the totality of 

lower order terms to zero and obtain the relation 

E~"c~P~ (zO) - E*“+*c%,,~R (20) + e’bz$ = 0, %==(>I) 

from which we have 

(5.S) 

Consider case lo of (4.1) in which R(z,)< O,P,(z,)> 0 . On the basis of (5.5) we conclude 

that Eq.(5.2) in the neighborhood of .z = 0, s = 0 defines one real branch 5 = .z* (E) < 0, 
z* (e)-+O, as E + 0. The value h = h* (E), Jz < h* (E) < J,, A* (E) --f J, corresponds by virtue of 

(5.1) to .z = z* (E), as E-+0. Curve k = k((h) is shown in Fig.2 (the dash lines relate J,; 

J, ) for small e,# 0 for case lo of (4.1). 

6. If now P$l# 0, e* = 0, then relations (1.1) and (1.2) assume the form 

oi = wyi, ozy, = C) (I,- x)-l, O'Y~=-Xb(h-Jjl) (i=l,2,3; ;=i,3) (6.1) 

w’=~A3(A-3~,+~ ej’ , 
, (I2 --h)- 

k = k (A. x) = 
[ 

1,x’b (A - I*) + c&?&j x [xw,)+~(~j-2” 
I 

For motions (6.1) the branches of curve T are defined by the equations h = !i (h, 0). ,! 0 
and !i = h (J*, x), h = J,. 

Let us investigate the form of curve h-= k(iZ, 0), x= 0. The equation ak/ah= 0 is equivalent 

to the equation of form (2.2) in which we have now 

Pj (h) = J, (J1 - l.)Q34 i J, (J 3 - VeI + 114J, - 3J1)(J, - J.) f (6.2) 
(451 - 3J,)(J, - A)l?(J3 - X)Y.l, - a)%&,a 

Introducing the notation 

I,-_ 12-I. JI ;=13-h, .z=-, a=_, 
J3- h 13 

b=!?, e=P’, 
e3 

~=?$(a<b<l) (6.3) 

we reduce equation P,f&) = 0 to the form (2.4). Setting as in the capacity of z0 the value 

lo = (J1 - J*)(J3 - J*)P = (a - b)(l-b)-l<O and using the results of Sect.3, we conclude that the 

number and disposition of real roots of polynomial (6.2) with o<~/, are: 

0 < ET < p+c” (%) < f h*) (6.4) 

e'= F'+'(z,)< F (L,*) 

F(f)@,) <e'< P (z,*) 

F(+)(tO) <e" = E‘ (t**) 

k(+)(%)<F (%t) <e3 
0 < cz< F(+)(z,) = F (Z,*) 

e? = F(+)(z,) = F (Q*) 

I+> F (+) (4 = F @I,) 

0 <G < F (It*) < fl+‘(%) 
ea = F (z,*) < PC+) (IO) 

F (a.) < e* < p(+) (20) 
F (il.) < f+ = F(+) (zo) 
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130. I,<hl<J3. e3 > F(+)(Q)> F (I,*) 

for a 2314 

14”. I, <h, < I,, 0 < ez < F(+)(z”) 

iP. x1 = 12, e3 = F(+) (4) 

16". II<?.,<la, e$ > F(t)@") 

Solid lines in Fig.3 show the form of projections of curve I on the plane x = 0 forcases 

lo, 6O, go of (6.4). The respective curve for case loo has an inflection point when 

Curves for cases 5O, 8O, 

h = h,. 

11°-160 are given in /7/. For all cases of (6.4) the form of 

curve L= k(J,,x),h= J, is the same as in /7/. 
Let now the center of masslieclose 

(6.3) can be represented in the form 

0 
0 a* A. J CZIJ A* A (5.2) ,where now I = [a - b i- (I - a) z](i - b)-‘. 

Jr Jt JJ A 12, 16121 4 We represent formula (5.3) for 

Fig.3 Fig.4 I = z. in the form 

R (x0) = (45 - 3n)(K(z,) - G). K(r,) = zgp (3 - 46)(4b - 30)-r (6.5) 

The following inequality holds: 

fi+) (Q) > K(G) (0 < a < Vr) (6.6) 

To establish the form of curve k= k(h) we use the results of Sects.3 and 4, and formulas 

(5.3)- (5.5), (6.5) and (6.6). 

For small E we have in cases lo and 6O of (6.4) R(z,) > 0. P,(q,) < 0, when 0 < e? < K (z,,) (Fig. 

4), and R(z,)<O, P&,)<O when K(z,)<ea<fi‘(+)(zoj (dash lines in Fig.3 relate to J,<A<J, ). For 

case go we have R (z.,)> 0, P&) < 0 when 0< ea < K(Q) <F (I,,) (Fig.4) , and R (zo) < 0, P, (3”) < 0 when 

K(z,)<G <F(z,,) (dash lines in Fig.3 relate to J1<b<J3 ). 
Let us ionvestigate the stability of motions (l.l), when .a=+/~ is a small parameter and 

conditions 1 of (6.4) and also the supplementary condition O<el<K(z,), under which curve 

k= k(A) is of the form shown in Fig.4, are satisfied. 
We denote by XV* (E) (V = i, . . . . 6)the real roots of Eq.(1.5) and, using the results of Sect. 

3 and formulas (5.3)- (5.5) we obtain for them the following expressions: 

&*(&)=hi+O(E) (i= i, 2, 3) (6.7) 

A,*(F)=It+(19-12)1z~1 +&J"'d'* 
[ 

+ 0 (EC") 
0 

&(') = J,i(ls-1J,))z,I 
L 
gJ’“+o(c) 

31, 
?.3* (9 < A** (E) < Jl < xr* (E) < A,’ (E) < A,* (8) < J, < A#* (E) < Jt 

We shall now consider the equation L(h)=O, which with allowance for (6.3) we represent 
in the form 

Q (I. E) = (1 - a)*e3z3 + E* [(I - b)V f (a - bjz e*] = 0 (6.8) 

which for E= 0 has the triple root .z=o. In the case of small E we seek a real root of 
Eq.(6.8) of the form 

t = 50 (E) = aEn + 0 (&I') 

Substituting (6.9) into (6.8) we obtain 

(6.9) 

2 II=_, a3= (1 z"I - e?) (1 - b)%g2 

3 (1 - u)Jei 
(6.10! 

From (6;9) I (6.101, and (6.3) we obtain for the real root h=I" (E) of the equation L(A)= 
u the expression 

A"(e) == J, - (13- Iz)(I Lo I- e+ 
[ 
(1 - b) 110 I 
(1 - a)e 1 

“’ ,‘,. + o (c’;,) 
(6.11) 

We Pass to the analysis of stability conditions (1.3). Using formula (1.4) and taking 
into account the form of curve k= k(h) (Fiq.4), we conclude that A>& if J.<A,', 
&* <A< 1%. or ?.)A,*. 

A,* ( A < J,. 
Moreover, it follows from (6.11) that 

and L<O, if 
I" (E) < J,. hence L>O, if h>Jp, 

h <A" (E) . 
if 

Hence motions (1.1) are stable x= 0, if 

hj" <h <ha*. Al* < 1.~ h,* or 
;i > I.,‘, and unstable ~71 

A,* <?%<A,'. 
x = 2. 

If however A<&*, b2* <I.< J, or J1 <h <II* then 



614 

Remains to investigate the stability of motions (1.1) for A from the lnterv,ll A,- . . A ,; 
For that it is sufficient to determine the sign of quantity L(A). 

From (6.7) and (6.11) we can see that A,* (E) and A"(E) have the same order of smallness, 
while i.,*(E) has a large order of smallness. Therefore L>O for the values of A close t<: 
.&*@<A,*) and motions (1.1) are stable x=0. Since in the case of continuous variation -df 
A from its value at which stability conditions (1.3) are satisfied, first condition 1 -') (I 
isviolated /2/, henceweconclude that h"(e)<Ahl* (E) and for A,* < Ai&* motions (1.1) are stable% -= 0. 

We would point out that one of the cases whose bifurcation diagram appears in Fig.4 was 

investrgated in /lo/. 

7. Finally, let e,e,sil, e,= 0, then 

w, = IV,’ O?l', = ej(Ii -A)_', I!+ =%Cl(A - J,) (l=l. 2, 3; j=3.3) (7.1) 

In the case of motions (7.1) the branches of 

x jx?6 (A - J,) + $I &I -“* 
i’ 

curve r are defined by the equations k= k(h. 

0),x=0 and h=k(J,,x).7,-I,. Let us investigate the form of the first of these curves. The 
equation ah/ah=0 is equivalent to an equation of the form (2.2) in which now 

Pj (A) = J, (Js -A)%*' + J, (J, - A)%," + [(4J, - 3J,)(J, - A) + 

(4J, - 3J,)(J, - h)l(J, - A)*(J3 - A)2e22e32 

Introducing the notation 

(7.2) 

; _Jz-i.. I, - A J2 bzi_L. e=% 
II-~. 

I==, azTi-, (7.3) 
3. 3 33 e3 

1 E=? (b<n<l) 

we reduce equation Pa(h):- 0 to the form (2.4). 

We set z0 = (J2 - J,)(J, - JJ' = (a - b)(l - 6)-l> 0. For a<~/~ the inequality z,,(Q)<~ 1s valid, 

hence the equation :,,(a)= z0 has a single real root b=b,@). O<b.(a)<a, and zI, (a) < J0 when 

b<b,. and z,* (a) > zO, when b, < b < (2 <‘Ia . From this on the basis of results in Sect.1 we 

arrive to the following conclusions about the number and disposition of real roots of poly- 

nomial (7.2): 

17.3) 

0 <d < F (h) 
ez = F (i,*) 

e?>F(%*) 
O<G<F(q*) 
.?i 72: F (z,*) 

e* > F (q*) 

0 <e-i < F(-) (zo) 

c: I F(-)(zo) 

w (2”) <e? < F(C) (Z”) 

F(C) (la) == c’ 

F(‘)(z,) < ~1 < F (i,*) 

Pl = F (Z,,] 

e!> F (:I*) 

and for a > 314 14. J2 C. i., / j., 

For motions (7.1) to which correspond points of curve X :- h (J1,x),Ir=J1 we have L<G rf 

x+0. and A can be represented in the form 

(7.5) 

Formula (5.3) for R(z,) is now of the form 

H (:,, = (46 - 3a)(K (zO) - e2). K(Q) = z;~ (3 - 46)(46 - 3a)-’ (7.6) 

and the following inequality holds: 

E(+) (I,,) < 6 (~0) (3/,u < b < (1 < ‘14). F (I,*) < K (~~)(~/,a < b < b, < (1 < ‘1,) (7.7) 

Now, using (7.5)- (7.7), (1.X), and (1.4) we can establish the foml of curve I? and the 

distribution along it of the degree of instability of motions (7.1). 
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The form of curve k= h(ioO). ;= oois shown in Fig. 

5,a (solid lines) for cases 1 , 4 , 7 of (7.4), and in 

Figs.S,b and c the solid lines relate, respectively, to 

go, and ll', when A' (z,,) < F (21~) and C? < li (i,,) , or when 

I( (zO) > F @II). 
The form of curve k= li(J,,z). h = J, for all cases 

of (4.7) appeared in /7/. 
Consider the case when the center of mass of the 

body lies close to the plane I, = 0, c, is then a small 

quantity, and Eq.(l.S) with notation (7.3) can be re- 

presented in the form (5.2), where now 

z = [a - b + (1 - a) r/(1 - b)-’ 

Consider the equation L(1)= 0 which with notation 

(7.3) can be represented in the form (6.8). For the 

real root h= A"(E) of equation L(A)= 0 we have the 

formula 

Fig.5 

Formulas (5.3)- (5.5), (7.8), (1.3), and (1.4) en- 

able us to draw some conclusions about the form of curve 

k= k(X) and the distribution along it of the degree of 

instability of motions (1.1) for all cases of (7.4)for 

small values of E = c,/e,. 

The formof curve k=k(i) is shown in 

(solid lines for h<J,) for case ll" of (7.4) 

Fig.5,~ 

when 

K (zO) <F (21.) and e' < K (Z@), or when K (2") > F (~1~) . The 

form of curve k= k(b) for cases lo, 4o, 7O is similar 

to that shown in Fig.4, except that the width with re- 

spect to h of secular stability (x==U), which lies 

between h= J1 and h = J,, does not approach zero as E -0. 
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